Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France August 23-26, 20
Using Zigbee to Integrate Medical Devices
Paul Frehill, Desmond Chambers, Cosmin Rotariu Abstract? Wirelessly enabling Medical Devices such as Vital Signs Monitors, Ventilators
and Infusion Pumps allows central data collection. This paper discusses how data from these types of devices can be integrated into hospital systems using wireless sensor networking technology. By integrating devices you are protecting investment and opening up the possibility of networking with similar devices. In this context we present how Zigbee meets our requirements for bandwidth, power, security and mobility. We have examined the data throughputs for various medical devices, the requirement of data frequency, security of patient data and the logistics of moving patients while connected to devices. The paper describes a new tested architecture that allows this data to be seamlessly integrated into a User Interface or Healthcare Information System (HIS). The design supports the dynamic addition of new medical devices to the system that were previously unsupported by the system. To achieve this, the hardware design is kept generic and the software interface for different types of medical devices is well defined. These devices can also share the wireless resources with other types of sensors being developed in conjunction on this project such as wireless ECG (Electrocardiogram) and Pulse-Oximetry sensors. Keywords?Biomedical Telemetry, Medical Devices, Bioinformatics, Wireless Sensor Networks, Healthcare Information Systems.
MANY devices that exist today by the bedside in the hospital ward, intensive care unit or other clinical setting have data output features over serial ports and other types of interfaces such as USB. These devices are usually considered a significant investment and are usually purchased in an ad hoc fashion as required when finance becomes available. The consequence of this is that devices are often from different manufacturers that don't support any standard protocol. This can make integrating these devices into a single network difficult. In the hospital ward Vital Signs monitors, Ventilators and Infusion Pumps of many different brands are usually portable and wheeled from patient to patient as required. By networking these devices the hospital gains all the advantages associated with storing patient data centrally in electronic records. By making the device part of a wireless sensor network such as a Zigbee [1] network there are several more advantages including, cable replacement, mobility and location management. Once these devices are networked they can also use the infrastructure of other deployments of similar wireless sensor networks in the surrounding environment. To achieve this type of solution each device must be fitted with a piece of hardware that will act as a serial to wireless bridge, a Medical Device Interface (MDI). This MDI will allow the device to receive and transmit data within the wireless sensor network. This inexpensive hardware will be generic to fit a wide range of medical devices. Similarly the firmware can be kept generic and any specific device communication protocols can be implemented on a server on the network
backend. The work described in this paper is part of a larger project,the goal of which is to provide a complete patient monitoring system. Other features of the overall system will be to provide ECG (Electrocardiogram) and Pulse-Oximetry data in a novel way over a wireless sensor network using expertise gained on prior projects [2].
The concept of using wireless sensor networks for Medical Care and wireless patient monitoring has been explored by others but integrating data from other devices is generally not discussed. There is ongoing related work in patient monitoring using wireless sensors such as the "CodeBlue"project at Harvard [3]. Others have also proven successful with wireless sensor networks designs for medical sensors [4] and in the management of sensor data [5]. It has been identified that it is desirable to wirelessly enable existing medical devices that provide vital signs data using technologies such as Zigbee [6], [7]. The research described in this paper aspires to meet these requirements. The use of wireless sensor networks within the hospital has been extensively examined. Moreover, other wireless technologies within the same frequency band, such as IEEE 8
  02.11 [8], have existed within the hospital for some time [9].
Established standards for wireless applications, such as Bluetooth [10] and IEEE 8
  02.11, allow high transmission rates, but at the expense of power consumption, application complexity, and cost. Zigbee offers low cost, low power devices that can communicate with each other and the outside world. ZigBee's self-forming and self-healing mesh-network architecture lets data and control messages pass from one node to another by multiple paths. This is particularly useful in a hospital environment where interference from walls, people and general obstacles is a major issue. Zigbee is based upon the IEEE standard 8
  15.4 [11] for radio hardware and software specification.
B. Mobility
Zigbee enabled devices support a sleep mode. An off-line node can connect to a network in about 30 ms. Waking up a sleeping node takes about 15 ms, as does accessing a channel and transmitting data. If the requirement is to collect data once a minute the device can be placed in a power saving mode saving significant amounts of energy and increasing the battery life. In sleep mode a zigbee chip can assume as little as
  1.0uA [12]. This is particularly important in a medical setting where patients are often on the move while still attached to medical devices.
C. Co-existence
Both Zigbee and IEEE8
  02.11 operate in the license-free industrial scientific medical (ISM)
  2.4GHz frequency band.IEEE8
  02.11 is already in widespread use within hospitals which would encourage the adoption of Zigbee solutions in the same environment. However care has to be taken to avoid interference between these 2 neighbouring technologies as described in the paper entitled "Coexistance of IEEE8
  15.4 with other systems in the
  2.4GHz-ISM-band" [13]. By selecting an appropriate channel, after performing a simple site survey, these problems can be easily avoided.
D. Device Parameters
Typical readings available on a ventilator are Inspiratory Tidal Volume, Expiratory Tidal Volume, O2 concentration,Respiratory Rate, Peak Pressure, Expired Minute Volume and Mean
Airway Pressure. The settings on the ventilator are also of interest to medical staff. The most typical settings we've chosen are Inspiratory Tidal Volume, Minute Volume, O2 Concentration, I:E Ratio, Breath Duration and Inspiratory Flow. Similarly we have chosen some common parameters for Vital Signs Monitors. These are Respiratory Rate, Non Invasive Blood Pressure, SPO2 and Temperature. The third device we selected parameters for is the Unfusion Pump. The common parameters we are most interested in here are Volume, Time, Ramp and Occlusion Pressure. Further parameters can be easily added to the system in the future.
E. Bandwidth
For development purposes we analysed a Maquet Servo-I [14] which supports all the ventilator parameters described above. This ventilator works in a command response manner.When initial configuration has taken place 2 commands which are 7 bytes long each will produce 2 responses of 67 bytes each. Therefore even in a multi hop mesh network it is anticipated we would be able to support several of these devices plus other types of devices on the same 8
  15.4 channel.
第29届IEEE EMBS IEEE EMBS BS国际程序会议 城市 法国 里昂 2007年8月23日至27日
应用紫蜂技术将医疗器械一体化 摘要:无线电技术能够使医疗设备,例如生命体征监视器,呼吸设备以及输液泵做到重要数据的收集.这 篇论文讨论了使用无线电传感器联网技术使数据从这些形式的医疗设备中被整合到医用系统中.通过集成 设备,你可以保护投资和开发网络技术应用到类似设备的可行性. 在这样的背景下,我们讨论怎样使"紫蜂"技术满足我们对于宽带,能源,安全性和移动性的要求.我 们已经检验了各种设备的数据总处理能力,要求的数据频率,病人的安全性数据,以及当流动病人连接到 设备后的后勤服务. 这篇论文描述了一项全新的测试成果,这项成果能够使数据被准确无误的集成到用户界面或者医疗信息 系统(HIS).这项设计支持动态的增加新的医疗设备到过去并不支持的系统.为了达到这样的目的,硬件 设计被保持原样,软件设计对于不同形式的医疗设备的代码被很好的重新定义.这些设备还可以共享无线 电资源,通过其他形式正在开发的传感器,来结合到此项目,例如无线电心电图和脉冲血氧测定传感器. 关键字:生物医学遥测 医疗设备 生物信息学 无线传感器网络 医疗信息系统 引言 当前在医院的病房里,重症监护病房,或者其他的临床设置于病床边的医疗设备都有数据输出功能的串 行端口和其他类型的接口,如 USB 接口.这些设备经常是被认为具有重要意义的投资,而且当资金到位时 经常是被作为需求以一种特别流行的方式来购买.这样的结果就是从不同制造商购买的设备不能够支持任 何的标准协议.这样就会使整合这些设备到一个信号网络变得困难. 在医院病房有许多不同品牌的生命体征监视器,呼吸设备以及输液泵,从一个病人到另一个病人通常需 要有便携性以及可移动性.通过联网这些设备,医院获得了有所的优点,将病人数据集中储存在电子记录. 通过使用设备的部分无线电传感器网络,例如"紫蜂"技术网络技术,可以包含更多的优点:电缆更换, 移动性和位置管理.一旦这些设备是可以联网的,他们也能够在同一环境中使用其他的基础设施类似无线 电传感器. 为了获得这种类型的解决方案,每种设备必须被匹配到一块硬件中,做为一个串行的无限网桥即医疗设
备接口.mdi 将会允许设备通过无线传感器网络来接受和发送数据.这种低成本的硬件将是通用的,以适 用于广泛的医疗设备.类似的固件可以保持通用而且任何特定的设备通信协议能够在服务器上网络上的后 端得到执行. 本篇论文描述的工作是大项目中的一部分,其目标是提供完整的病人监护系统.其他功能的整体系统将提 供心电图(心电图)和脉冲血氧测定法的数据,通过创新的方式,在无线传感器网络知识获得优先的项目. 二 相关工作 使用无线传感器网络的医疗服务和无线病人监测的观念一直被别人探索着,但是将数据从其他装置进 行整合通常不被讨论.目前正在进行的有关病人监护仪的工作,例如使用无线传感器如" CodeBlue "项 目在哈佛大学[ 3 ] 开展.其他人同样也成功地使用无线传感器网络设计的医疗传感器[ 4 ]和管理中的传 感器数据[ 5 ] .它已被确定,这是可取的,通过无线方式使现有的医疗设备,提供生命体征数据,使用 的技术,例如ZigBee的[ 6 ] [ 7 ] .本篇论文所描述的研究力图满足这些要求.使用无线传感器网络在 医院进行了广泛的审查.此外,其他无线技术在相同频段,如IEEE 8
  02.11标准[ 8 ] ,已经被在医院一段 使用时间[ 9 ] . 三 需求分析 A 无线技术 无线应用的既定标准,如蓝牙[ 10 ]和IEEE 8
  02.11,允许高速传输速率,但是代价是牺牲能耗,应用复 杂性和成本.ZigBee提供低成本,低功率的设备,可以互相交流和外面的世界.ZigBee的自我形成和自我 调整的网络架构让数据和控制信息从一个节点传输到另一个多个路径.这是在特别有用的在医院的墙壁干 扰,和一般人的阻碍下,是一个重要问题.ZigBee是基于IEEE标准8
  15.4 [ 11 ]无线电的硬件和软件规 范. B 调动 实用ZigBee功能的设备,支持睡眠模式.离线节点可以连接到一个网络中的大约30毫秒.唤醒一个沉睡 的节点约需15毫秒,因为没有进入的渠道和传输数据.如果要求是收集数据,那么该设备可以放置在省电 模式节省大量的能源和提高电池寿命.在睡眠模式的ZigBee芯片可以承担少
  1.0uA [ 12 ] .这一点尤其重 要,在医疗环境中,病人往往是在轮椅上移动的时候仍然被连接到医疗设备. C 角共存 ZigBee和IEEE8
  02.11工作在免许可证的工业科学医疗协会( ISM )的
  02.11已经 广泛使用在医院,医院将鼓励通过ZigBee解决方案促使在同一个环境中使用.但是必须注意,以避免干扰 这些本论文所描述的两个相邻的技术文件,题为"共存的IEEE8
  2.4GHz频带" [ 13 ] .通过选择一个适当的渠道,在一个简单的现场调查表现,这些问题可以很容易地避免. D 器件参数 可以在呼吸机进行典型的读数如吸气潮气量,呼气潮气量,氧气浓度,呼吸速率,峰值压力,过期每分 通气量和平均气道压.医务人员对于仪器上的通风设备也感



   Chapter 1 General Principles 1.1 What is Translation? It can be roughly defined as a reproduction or recreation in one language of what is written or said in another language. As a very complicated human activity, its whole picture is never easy to ...


   第一段翻译(2): what is the exact value of the number pai?a mathematician made an experiment in order to find his own estimation of the number his experiment,he used an old bicycle wheel of diameter 63.7cm.he marked the point on the tire where the ...


       本文由chhuach2005贡献     doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机 查看。     电气自动化专业英语(翻译1-3)     默认分类 2008-06-19 16:46 阅读471 字号: 大 评论0 中 小     第一部分:电子技术 第一章电子测量仪表 电子技术人员使用许多不同类型的测 量仪器。 一些工作需要精确测量面另一些工作只需粗 略估计。 有些仪器被使用仅仅 是确定线路是否完整。 最常用的测量测试仪表有: 电压测试仪,  ...


   浙江师范大学 外国语学院 课程大纲及教案 专业名称: 英语专业 课程名称: 《翻 译》 (1) 主导教材:毛荣贵《新世纪大学英汉翻译教程》 所属课程组: 翻 译 组 课程负责人: 适用年级: 英语专业本科 2003 级 200 5 ? 200 6 学年第 一 学期 《翻译》 (1)课程大纲及教案 翻译( ) (2) 翻译(1) )课程大纲 ( 一、课程概况 课程名称:翻译 课程类别:专业基础课 学 分:4 学 时:68 课程编号:030903081,030903082 开课学期:五、六 二、 ...


   Fundamentals of computer and networks 计算机是一种能接收、存储和处理数据,并能产生输出结果的快速、精确的符号加工系 统, 这一系统是在存储指令程序控制下工作的。 本文说明为什么计算机是一个系统以及计算 机是如何组成的。系统的主要部件包括输入设备、处理机和输出设备。现在详细介绍每一部 件。 计算机系统使用多种输入设备。其中有些输入设备直接进行人-机通信, 输入设备 另一些则首先要求把数据记录在诸如磁性材料那样的输入介质上。 常用的是读取以磁化方式 记录在专 ...


   较难的专业英语翻译全国人民代表大会 National People's Congress (NPC)   主席团 Presidium   常务委员会 Standing Committee   办公厅 General Office   秘书处 Secretariat   代表资格审查委员会 Credentials Committee   提案审查委员会 Motions Examination Committee   民族委员会 Ethnic Affairs Committee   法律委员会 L ...


   高新电脑学校 ?? 计算机组装与维护 课件制作:孙波 IT CFAC 国家计算机教育认证 gaoxindiannaoxuexiao 计算机英语 计算机英语词汇对译 蒙阴高新电脑学校 资料整理:孙波 2010 年 9 月 1 日 2010-9-2 1 高新学校欢迎您 高新电脑学校 ?? 计算机组装与维护 课件制作:孙波 PC personal computer 个人计算机 IBM International Business Machine 美国国际商用机器公司的公司简称,是最早推出的个人 计 ...


   本文由372133376贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 July 28, 2007 自动化专业英语教程 教学课件 P6U1A Recent Advances and Future Tends in Electrical Machine Drivers 第六部分第一单元课文A 第六部分第一单元课文 电机传动系统的最新进展和未来趋势 A 电机传动系统的最新进展和未来趋势 1.课文内容简介:本文是一篇 ...


       本文由372133376贡献     ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机 查看。     July 28, 2007     自动化专业英语教程     教学课件     P6U1A Recent Advances and Future Tends in Electrical Machine Drivers     第六部分第一单元课文A 第六部分第一单元课文     电机传动系统的最新进展和未来趋势     A 电机传动系统的最新进展和未 ...


   July 28, 2007 自动化专业英语教程 教学课件 Email : http: // P6U1A Recent Advances and Future Tends in Electrical Machine Drivers 第六部分第一单元课文A 第六部分第一单元课文 电机传动系统的最新进展和未来趋势 A 电机传动系统的最新进展和未来趋势 1.课文内容简介:本文是一篇综述性文章,主要介绍了电机传动 领域 ...



   Unit 5 Do you have a soccer ball? Do you have a bookcase? Yes, I do. No, I don’t. Do you have an alarm clock? Yes, I do. No, I don’t. A: Do you have a ruler? B: Yes, I do. I have a ruler. A: Do you have an eraser? B: Yes, I do. I have an eraser. A: ...


   学年度( 银川一中 2008/2009 学年度(上)高一期末考试 英 注意事项: 注意事项: 语 试 卷 朱俊英、 命题教师:朱俊英、武永玲 1.答第 I 卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型用铅笔涂写 . 卷前,考生务必将自己的姓名、准考证号、考试科目、 在答题卡上。 在答题卡上。 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡 .每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动, 皮擦干净后,再选涂其他答案标号,不能答在 ...


   非常抱歉,该文档存在转换错误,不能在本机显示。建议您重新选择其它文档 ...


   Lesson Eight point: Key point: past participle participle and present Difficult points: points: the different usages between past participle and present participle return Requirement: Requirement: By the end of this lesson, you should be able to ha ...


   第一讲. 语 音 一.简介: (1) 元音 20 个。所有元音的发音都需要张嘴震动声带,且呼出的气流通过口腔 时不受阻碍。发出的声音悦耳。 (2)辅音 28 个。发音时候气流通过口腔或鼻腔受到阻碍。 分为清辅音(发音时候,声带不振动)和浊辅音(声带振动) 。 2. 元音分为:单元音(前元音、中元音、后元音) 、双元音两大类。 单元音的发音要领是准确掌握其舌位的前、中、后,以及高、中、低。 二.元音 长元音一般是通过“口腔”发出的,发声处“靠前” ;而短元音则是用喉咙发出 的,发音处尽量“靠后 ...